Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 83 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 25 tok/s Pro
GPT-5 High 30 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 462 tok/s Pro
Claude Sonnet 4 39 tok/s Pro
2000 character limit reached

Fine-Grained VLM Fine-tuning via Latent Hierarchical Adapter Learning (2508.11176v1)

Published 15 Aug 2025 in cs.CV

Abstract: Adapter-based approaches have garnered attention for fine-tuning pre-trained Vision-LLMs (VLMs) on few-shot classification tasks. These methods strive to develop a lightweight module that better aligns visual and (category) textual representations, thereby enhancing performance on downstream few-shot learning tasks. However, existing adapters generally learn/align (category) textual-visual modalities via explicit spatial proximity in the underlying embedding space, which i) fails to capture the inherent one-to-many associations between categories and image samples and ii) struggles to establish accurate associations between the unknown categories and images. To address these issues, inspired by recent works on hyperbolic learning, we develop a novel Latent Hierarchical Adapter (LatHAdapter) for fine-tuning VLMs on downstream few-shot classification tasks. The core of LatHAdapter is to exploit the latent semantic hierarchy of downstream training data and employ it to provide richer, fine-grained guidance for the adapter learning process. Specifically, LatHAdapter first introduces some learnable `attribute' prompts as the bridge to align categories and images. Then, it projects the categories, attribute prompts, and images within each batch in a hyperbolic space, and employs hierarchical regularization to learn the latent semantic hierarchy of them, thereby fully modeling the inherent one-to-many associations among categories, learnable attributes, and image samples. Extensive experiments on four challenging few-shot tasks show that the proposed LatHAdapter consistently outperforms many other fine-tuning approaches, particularly in adapting known classes and generalizing to unknown classes.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube