Papers
Topics
Authors
Recent
AI Research Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 42 tok/s Pro
GPT-5 Medium 23 tok/s Pro
GPT-5 High 20 tok/s Pro
GPT-4o 103 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4 38 tok/s Pro
2000 character limit reached

Beyond Graph Model: Reliable VLM Fine-Tuning via Random Graph Adapter (2507.10355v1)

Published 14 Jul 2025 in cs.CV

Abstract: Textual adapter-based tuning methods have shown significant potential in transferring knowledge from pre-trained Vision-LLMs (VLMs) to downstream tasks. Existing works generally employ the deterministic textual feature adapter to refine each category textual representation. However, due to inherent factors such as different attributes and contexts, there exists significant diversity in textual descriptions for each category. Such description diversity offers rich discriminative semantic knowledge that can benefit downstream visual learning tasks. Obviously, traditional deterministic adapter model cannot adequately capture this varied semantic information. Also, it is desirable to exploit the inter-class relationships in VLM adapter. To address these issues, we propose to exploit random graph model into VLM adapter and develop a novel Vertex Random Graph Adapter (VRGAdapter). VRGAdapter first models the inherent diverse descriptions of each category and inter-class relationships of different categories simultaneously by leveraging a Vertex Random Knowledge Graph (VRKG) model. Then, it employs probabilistic message propagation on VRKG to learn context-aware distribution representation for each class node. Finally, it adopts a reparameterized sampling function to achieve textual adapter learning. Note that, VRGAdapter provides a more general adapter solution that encompasses traditional graph-based adapter as a special case. In addition, to enable more robust performance for downstream tasks, we also introduce a new Uncertainty-guided Multi-branch Fusion (UMF) scheme that dynamically integrates multiple pre-trained models for ensemble prediction. Extensive experiments on multiple benchmark datasets demonstrate the effectiveness of our approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb On Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.