Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 133 tok/s
Gemini 3.0 Pro 55 tok/s Pro
Gemini 2.5 Flash 164 tok/s Pro
Kimi K2 202 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Approaching the Source of Symbol Grounding with Confluent Reductions of Abstract Meaning Representation Directed Graphs (2508.11068v1)

Published 14 Aug 2025 in cs.CL

Abstract: Abstract meaning representation (AMR) is a semantic formalism used to represent the meaning of sentences as directed acyclic graphs. In this paper, we describe how real digital dictionaries can be embedded into AMR directed graphs (digraphs), using state-of-the-art pre-trained LLMs. Then, we reduce those graphs in a confluent manner, i.e. with transformations that preserve their circuit space. Finally, the properties of these reduces digraphs are analyzed and discussed in relation to the symbol grounding problem.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.