Papers
Topics
Authors
Recent
2000 character limit reached

Not There Yet: Evaluating Vision Language Models in Simulating the Visual Perception of People with Low Vision (2508.10972v1)

Published 14 Aug 2025 in cs.CV, cs.AI, and cs.HC

Abstract: Advances in vision LLMs (VLMs) have enabled the simulation of general human behavior through their reasoning and problem solving capabilities. However, prior research has not investigated such simulation capabilities in the accessibility domain. In this paper, we evaluate the extent to which VLMs can simulate the vision perception of low vision individuals when interpreting images. We first compile a benchmark dataset through a survey study with 40 low vision participants, collecting their brief and detailed vision information and both open-ended and multiple-choice image perception and recognition responses to up to 25 images. Using these responses, we construct prompts for VLMs (GPT-4o) to create simulated agents of each participant, varying the included information on vision information and example image responses. We evaluate the agreement between VLM-generated responses and participants' original answers. Our results indicate that VLMs tend to infer beyond the specified vision ability when given minimal prompts, resulting in low agreement (0.59). The agreement between the agent' and participants' responses remains low when only either the vision information (0.59) or example image responses (0.59) are provided, whereas a combination of both significantly increase the agreement (0.70, p < 0.0001). Notably, a single example combining both open-ended and multiple-choice responses, offers significant performance improvements over either alone (p < 0.0001), while additional examples provided minimal benefits (p > 0.05).

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 11 likes about this paper.