Papers
Topics
Authors
Recent
2000 character limit reached

Dynamic Skewness in Stochastic Volatility Models: A Penalized Prior Approach (2508.10778v1)

Published 14 Aug 2025 in q-fin.ST and stat.AP

Abstract: Financial time series often exhibit skewness and heavy tails, making it essential to use models that incorporate these characteristics to ensure greater reliability in the results. Furthermore, allowing temporal variation in the skewness parameter can bring significant gains in the analysis of this type of series. However, for more robustness, it is crucial to develop models that balance flexibility and parsimony. In this paper, we propose dynamic skewness stochastic volatility models in the SMSN family (DynSSV-SMSN), using priors that penalize model complexity. Parameter estimation was carried out using the Hamiltonian Monte Carlo (HMC) method via the \texttt{RStan} package. Simulation results demonstrated that penalizing priors present superior performance in several scenarios compared to the classical choices. In the empirical application to returns of cryptocurrencies, models with heavy tails and dynamic skewness provided a better fit to the data according to the DIC, WAIC, and LOO-CV information criteria.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We found no open problems mentioned in this paper.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.