Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 65 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 32 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 453 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

An Efficient Model-Driven Groupwise Approach for Atlas Construction (2508.10743v1)

Published 14 Aug 2025 in cs.CV and math.OC

Abstract: Atlas construction is fundamental to medical image analysis, offering a standardized spatial reference for tasks such as population-level anatomical modeling. While data-driven registration methods have recently shown promise in pairwise settings, their reliance on large training datasets, limited generalizability, and lack of true inference phases in groupwise contexts hinder their practical use. In contrast, model-driven methods offer training-free, theoretically grounded, and data-efficient alternatives, though they often face scalability and optimization challenges when applied to large 3D datasets. In this work, we introduce DARC (Diffeomorphic Atlas Registration via Coordinate descent), a novel model-driven groupwise registration framework for atlas construction. DARC supports a broad range of image dissimilarity metrics and efficiently handles arbitrary numbers of 3D images without incurring GPU memory issues. Through a coordinate descent strategy and a centrality-enforcing activation function, DARC produces unbiased, diffeomorphic atlases with high anatomical fidelity. Beyond atlas construction, we demonstrate two key applications: (1) One-shot segmentation, where labels annotated only on the atlas are propagated to subjects via inverse deformations, outperforming state-of-the-art few-shot methods; and (2) shape synthesis, where new anatomical variants are generated by warping the atlas mesh using synthesized diffeomorphic deformation fields. Overall, DARC offers a flexible, generalizable, and resource-efficient framework for atlas construction and applications.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.