Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 63 tok/s
Gemini 2.5 Pro 44 tok/s Pro
GPT-5 Medium 31 tok/s Pro
GPT-5 High 32 tok/s Pro
GPT-4o 86 tok/s Pro
Kimi K2 194 tok/s Pro
GPT OSS 120B 445 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Learning from Natural Language Feedback for Personalized Question Answering (2508.10695v1)

Published 14 Aug 2025 in cs.CL, cs.AI, and cs.IR

Abstract: Personalization is crucial for enhancing both the effectiveness and user satisfaction of language technologies, particularly in information-seeking tasks like question answering. Current approaches for personalizing LLMs often rely on retrieval-augmented generation (RAG), followed by reinforcement learning with scalar reward signals to teach models how to use retrieved personal context. We believe that these scalar rewards sometimes provide weak, non-instructive feedback, limiting learning efficiency and personalization quality. We introduce VAC, a novel framework for personalized response generation that replaces scalar rewards with natural language feedback (NLF) that are generated conditioned on the user profiles and the question narratives. NLF serves as a rich and actionable supervision signal, allowing the policy model to iteratively refine its outputs and internalize effective personalization strategies. Training alternates between optimizing the feedback model and fine-tuning the policy model on the improved responses, resulting in a policy model that no longer requires feedback at inference. Evaluation on the LaMP-QA benchmark that consists of three diverse domains demonstrates consistent and significant improvements over the state-of-the-art results. Human evaluations further confirm the superior quality of the generated responses. These results demonstrate that NLF provides more effective signals for optimizing personalized question answering.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.