Papers
Topics
Authors
Recent
2000 character limit reached

Higher-order Gini indices: An axiomatic approach (2508.10663v1)

Published 14 Aug 2025 in q-fin.MF, econ.EM, math.ST, and stat.TH

Abstract: Via an axiomatic approach, we characterize the family of n-th order Gini deviation, defined as the expected range over n independent draws from a distribution, to quantify joint dispersion across multiple observations. This extends the classical Gini deviation, which relies solely on pairwise comparisons. Our generalization grows increasingly sensitive to tail inequality as n increases, offering a more nuanced view of distributional extremes. We show that these higher-order Gini deviations admit a Choquet integral representation, inheriting the desirable properties of coherent deviation measures. Furthermore, we prove that both the n-th order Gini deviation and its normalized version, the n-th order Gini coefficient, are n-observation elicitable, facilitating rigorous backtesting. Empirical analysis using World Inequality Database data reveals that higher-order Gini coefficients detect disparities obscured by the classical Gini coefficient, particularly in cases of extreme income or wealth concentration. Our results establish higher-order Gini indices as valuable complementary tools for robust inequality assessment.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 1 like.

Upgrade to Pro to view all of the tweets about this paper: