Papers
Topics
Authors
Recent
2000 character limit reached

Towards Agentic AI for Multimodal-Guided Video Object Segmentation (2508.10572v1)

Published 14 Aug 2025 in cs.CV

Abstract: Referring-based Video Object Segmentation is a multimodal problem that requires producing fine-grained segmentation results guided by external cues. Traditional approaches to this task typically involve training specialized models, which come with high computational complexity and manual annotation effort. Recent advances in vision-language foundation models open a promising direction toward training-free approaches. Several studies have explored leveraging these general-purpose models for fine-grained segmentation, achieving performance comparable to that of fully supervised, task-specific models. However, existing methods rely on fixed pipelines that lack the flexibility needed to adapt to the dynamic nature of the task. To address this limitation, we propose Multi-Modal Agent, a novel agentic system designed to solve this task in a more flexible and adaptive manner. Specifically, our method leverages the reasoning capabilities of LLMs to generate dynamic workflows tailored to each input. This adaptive procedure iteratively interacts with a set of specialized tools designed for low-level tasks across different modalities to identify the target object described by the multimodal cues. Our agentic approach demonstrates clear improvements over prior methods on two multimodal-conditioned VOS tasks: RVOS and Ref-AVS.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.