Papers
Topics
Authors
Recent
2000 character limit reached

On the Complexity-Faithfulness Trade-off of Gradient-Based Explanations (2508.10490v1)

Published 14 Aug 2025 in cs.LG, cs.AI, and cs.CV

Abstract: ReLU networks, while prevalent for visual data, have sharp transitions, sometimes relying on individual pixels for predictions, making vanilla gradient-based explanations noisy and difficult to interpret. Existing methods, such as GradCAM, smooth these explanations by producing surrogate models at the cost of faithfulness. We introduce a unifying spectral framework to systematically analyze and quantify smoothness, faithfulness, and their trade-off in explanations. Using this framework, we quantify and regularize the contribution of ReLU networks to high-frequency information, providing a principled approach to identifying this trade-off. Our analysis characterizes how surrogate-based smoothing distorts explanations, leading to an ``explanation gap'' that we formally define and measure for different post-hoc methods. Finally, we validate our theoretical findings across different design choices, datasets, and ablations.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.