Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 60 tok/s
Gemini 2.5 Pro 54 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 35 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 176 tok/s Pro
GPT OSS 120B 448 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

SEQ-GPT: LLM-assisted Spatial Query via Example (2508.10486v1)

Published 14 Aug 2025 in cs.AI

Abstract: Contemporary spatial services such as online maps predominantly rely on user queries for location searches. However, the user experience is limited when performing complex tasks, such as searching for a group of locations simultaneously. In this study, we examine the extended scenario known as Spatial Exemplar Query (SEQ), where multiple relevant locations are jointly searched based on user-specified examples. We introduce SEQ-GPT, a spatial query system powered by LLMs towards more versatile SEQ search using natural language. The language capabilities of LLMs enable unique interactive operations in the SEQ process, including asking users to clarify query details and dynamically adjusting the search based on user feedback. We also propose a tailored LLM adaptation pipeline that aligns natural language with structured spatial data and queries through dialogue synthesis and multi-model cooperation. SEQ-GPT offers an end-to-end demonstration for broadening spatial search with realistic data and application scenarios.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com

alphaXiv