Papers
Topics
Authors
Recent
2000 character limit reached

A Hierarchical IDS for Zero-Day Attack Detection in Internet of Medical Things Networks (2508.10346v1)

Published 14 Aug 2025 in cs.LG and cs.NI

Abstract: The Internet of Medical Things (IoMT) is driving a healthcare revolution but remains vulnerable to cyberattacks such as denial of service, ransomware, data hijacking, and spoofing. These networks comprise resource constrained, heterogeneous devices (e.g., wearable sensors, smart pills, implantables), making traditional centralized Intrusion Detection Systems (IDSs) unsuitable due to response delays, privacy risks, and added vulnerabilities. Centralized IDSs require all sensors to transmit data to a central server, causing delays or network disruptions in dense environments. Running IDSs locally on IoMT devices is often infeasible due to limited computation, and even lightweight IDS components remain at risk if updated models are delayed leaving them exposed to zero-day attacks that threaten patient health and data security. We propose a multi level IoMT IDS framework capable of detecting zero day attacks and distinguishing between known and unknown threats. The first layer (near Edge) filters traffic at a coarse level (attack or not) using meta-learning or One Class Classification (OCC) with the usfAD algorithm. Subsequent layers (far Edge, Cloud) identify attack type and novelty. Experiments on the CICIoMT2024 dataset show 99.77 percentage accuracy and 97.8 percentage F1-score. The first layer detects zero-day attacks with high accuracy without needing new datasets, ensuring strong applicability in IoMT environments. Additionally, the meta-learning approach achieves high.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.