Integrating Reinforcement Learning with Visual Generative Models: Foundations and Advances (2508.10316v1)
Abstract: Generative models have made significant progress in synthesizing visual content, including images, videos, and 3D/4D structures. However, they are typically trained with surrogate objectives such as likelihood or reconstruction loss, which often misalign with perceptual quality, semantic accuracy, or physical realism. Reinforcement learning (RL) offers a principled framework for optimizing non-differentiable, preference-driven, and temporally structured objectives. Recent advances demonstrate its effectiveness in enhancing controllability, consistency, and human alignment across generative tasks. This survey provides a systematic overview of RL-based methods for visual content generation. We review the evolution of RL from classical control to its role as a general-purpose optimization tool, and examine its integration into image, video, and 3D/4D generation. Across these domains, RL serves not only as a fine-tuning mechanism but also as a structural component for aligning generation with complex, high-level goals. We conclude with open challenges and future research directions at the intersection of RL and generative modeling.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.