Cognitive Cybersecurity for Artificial Intelligence: Guardrail Engineering with CCS-7 (2508.10033v1)
Abstract: LLMs exhibit human-like cognitive vulnerabilities, such as emotional framing, that escape traditional behavioral alignment. We present CCS-7 (Cognitive Cybersecurity Suite), a taxonomy of seven vulnerabilities grounded in human cognitive security research. To establish a human benchmark, we ran a randomized controlled trial with 151 participants: a "Think First, Verify Always" (TFVA) lesson improved cognitive security by +7.9% overall. We then evaluated TFVA-style guardrails across 12,180 experiments on seven diverse LLM architectures. Results reveal architecture-dependent risk patterns: some vulnerabilities (e.g., identity confusion) are almost fully mitigated, while others (e.g., source interference) exhibit escalating backfire, with error rates increasing by up to 135% in certain models. Humans, in contrast, show consistent moderate improvement. These findings reframe cognitive safety as a model-specific engineering problem: interventions effective in one architecture may fail, or actively harm, another, underscoring the need for architecture-aware cognitive safety testing before deployment.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.