Papers
Topics
Authors
Recent
2000 character limit reached

A Transparent Fairness Evaluation Protocol for Open-Source Language Model Benchmarking on the Blockchain (2508.09993v1)

Published 29 Jul 2025 in cs.CL

Abstract: LLMs are increasingly deployed in realworld applications, yet concerns about their fairness persist especially in highstakes domains like criminal justice, education, healthcare, and finance. This paper introduces transparent evaluation protocol for benchmarking the fairness of opensource LLMs using smart contracts on the Internet Computer Protocol (ICP) blockchain (Foundation, 2023). Our method ensures verifiable, immutable, and reproducible evaluations by executing onchain HTTP requests to hosted Hugging Face endpoints and storing datasets, prompts, and metrics directly onchain. We benchmark the Llama, DeepSeek, and Mistral models on the PISA dataset for academic performance prediction (OECD, 2018), a dataset suitable for fairness evaluation using statistical parity and equal opportunity metrics (Hardt et al., 2016). We also evaluate structured Context Association Metrics derived from the StereoSet dataset (Nadeem et al., 2020) to measure social bias in contextual associations. We further extend our analysis with a multilingual evaluation across English, Spanish, and Portuguese using the Kaleidoscope benchmark (Salazar et al., 2025), revealing cross-linguistic disparities. All code and results are open source, enabling community audits and longitudinal fairness tracking across model versions.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.