Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 81 tok/s
Gemini 2.5 Pro 52 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 99 tok/s Pro
Kimi K2 215 tok/s Pro
GPT OSS 120B 461 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Do Vision Transformers See Like Humans? Evaluating their Perceptual Alignment (2508.09850v1)

Published 13 Aug 2025 in cs.CV

Abstract: Vision Transformers (ViTs) achieve remarkable performance in image recognition tasks, yet their alignment with human perception remains largely unexplored. This study systematically analyzes how model size, dataset size, data augmentation and regularization impact ViT perceptual alignment with human judgments on the TID2013 dataset. Our findings confirm that larger models exhibit lower perceptual alignment, consistent with previous works. Increasing dataset diversity has a minimal impact, but exposing models to the same images more times reduces alignment. Stronger data augmentation and regularization further decrease alignment, especially in models exposed to repeated training cycles. These results highlight a trade-off between model complexity, training strategies, and alignment with human perception, raising important considerations for applications requiring human-like visual understanding.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.