Evolution of Low-Level and Texture Human-CLIP Alignment (2508.09814v1)
Abstract: During the training of multi-modal models like CLIP, we observed an intriguing phenomenon: the correlation with low-level human image quality assessments peaks in the early epochs before gradually declining. This study investigates this observation and seeks to understand its causes through two key factors: shape-texture bias alignment and classification accuracy drop under noise. Our findings suggest that CLIP initially learn low-level visual features, enhancing its alignment with low-level human perception but also increasing its sensitivity to noise and its texture bias. As training progresses, the model shifts toward more abstract shape-based representations, improving noise robustness but reducing alignment with low-level human perception. These results suggest that these factors shared an underlying learning mechanism and provide new insights into optimizing the trade-off between perceptual alignment and robustness in vision-LLMs.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.