Papers
Topics
Authors
Recent
2000 character limit reached

Slot Attention-based Feature Filtering for Few-Shot Learning (2508.09699v1)

Published 13 Aug 2025 in cs.CV

Abstract: Irrelevant features can significantly degrade few-shot learn ing performance. This problem is used to match queries and support images based on meaningful similarities despite the limited data. However, in this process, non-relevant fea tures such as background elements can easily lead to confu sion and misclassification. To address this issue, we pro pose Slot Attention-based Feature Filtering for Few-Shot Learning (SAFF) that leverages slot attention mechanisms to discriminate and filter weak features, thereby improving few-shot classification performance. The key innovation of SAFF lies in its integration of slot attention with patch em beddings, unifying class-aware slots into a single attention mechanism to filter irrelevant features effectively. We intro duce a similarity matrix that computes across support and query images to quantify the relevance of filtered embed dings for classification. Through experiments, we demon strate that Slot Attention performs better than other atten tion mechanisms, capturing discriminative features while reducing irrelevant information. We validate our approach through extensive experiments on few-shot learning bench marks: CIFAR-FS, FC100, miniImageNet and tieredIma geNet, outperforming several state-of-the-art methods.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.