Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
GPT-5.1
GPT-5.1 96 tok/s
Gemini 3.0 Pro 48 tok/s Pro
Gemini 2.5 Flash 155 tok/s Pro
Kimi K2 197 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

EffiEval: Efficient and Generalizable Model Evaluation via Capability Coverage Maximization (2508.09662v1)

Published 13 Aug 2025 in cs.CL

Abstract: The rapid advancement of LLMs and the development of increasingly large and diverse evaluation benchmarks have introduced substantial computational challenges for model assessment. In this paper, we present EffiEval, a training-free approach for efficient benchmarking that effectively addresses data redundancy while maintaining high evaluation reliability. Our method is specifically designed to meet three key criteria for high-quality evaluation: representativeness, by ensuring comprehensive coverage of model capabilities; fairness, by remaining independent of model performance during sample selection to avoid bias; and generalizability, by enabling flexible transfer across datasets and model families without reliance on large-scale evaluation data. Unlike traditional methods that rely on absolute performance or require extensive evaluation data, our approach adaptively selects high-quality representative subsets based on the Model Utility Index (MUI). Extensive experiments on multiple public benchmarks and diverse LLMs demonstrate that EffiEval achieves strong ranking consistency with full-dataset evaluation using only a small fraction of the original data. Furthermore, our method is flexible and scalable in size, allowing users to balance evaluation efficiency and representativeness according to specific needs. Overall, EffiEval provides a practical and generalizable solution for reliable, fair, and efficient evaluation in the era of LLMs.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com