EffiEval: Efficient and Generalizable Model Evaluation via Capability Coverage Maximization (2508.09662v1)
Abstract: The rapid advancement of LLMs and the development of increasingly large and diverse evaluation benchmarks have introduced substantial computational challenges for model assessment. In this paper, we present EffiEval, a training-free approach for efficient benchmarking that effectively addresses data redundancy while maintaining high evaluation reliability. Our method is specifically designed to meet three key criteria for high-quality evaluation: representativeness, by ensuring comprehensive coverage of model capabilities; fairness, by remaining independent of model performance during sample selection to avoid bias; and generalizability, by enabling flexible transfer across datasets and model families without reliance on large-scale evaluation data. Unlike traditional methods that rely on absolute performance or require extensive evaluation data, our approach adaptively selects high-quality representative subsets based on the Model Utility Index (MUI). Extensive experiments on multiple public benchmarks and diverse LLMs demonstrate that EffiEval achieves strong ranking consistency with full-dataset evaluation using only a small fraction of the original data. Furthermore, our method is flexible and scalable in size, allowing users to balance evaluation efficiency and representativeness according to specific needs. Overall, EffiEval provides a practical and generalizable solution for reliable, fair, and efficient evaluation in the era of LLMs.
Sponsored by Paperpile, the PDF & BibTeX manager trusted by top AI labs.
Get 30 days freePaper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.