Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 17 tok/s Pro
GPT-5 High 22 tok/s Pro
GPT-4o 93 tok/s Pro
Kimi K2 186 tok/s Pro
GPT OSS 120B 446 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multi-Sequence Parotid Gland Lesion Segmentation via Expert Text-Guided Segment Anything Model (2508.09645v1)

Published 13 Aug 2025 in cs.CV

Abstract: Parotid gland lesion segmentation is essential for the treatment of parotid gland diseases. However, due to the variable size and complex lesion boundaries, accurate parotid gland lesion segmentation remains challenging. Recently, the Segment Anything Model (SAM) fine-tuning has shown remarkable performance in the field of medical image segmentation. Nevertheless, SAM's interaction segmentation model relies heavily on precise lesion prompts (points, boxes, masks, etc.), which are very difficult to obtain in real-world applications. Besides, current medical image segmentation methods are automatically generated, ignoring the domain knowledge of medical experts when performing segmentation. To address these limitations, we propose the parotid gland segment anything model (PG-SAM), an expert diagnosis text-guided SAM incorporating expert domain knowledge for cross-sequence parotid gland lesion segmentation. Specifically, we first propose an expert diagnosis report guided prompt generation module that can automatically generate prompt information containing the prior domain knowledge to guide the subsequent lesion segmentation process. Then, we introduce a cross-sequence attention module, which integrates the complementary information of different modalities to enhance the segmentation effect. Finally, the multi-sequence image features and generated prompts are feed into the decoder to get segmentation result. Experimental results demonstrate that PG-SAM achieves state-of-the-art performance in parotid gland lesion segmentation across three independent clinical centers, validating its clinical applicability and the effectiveness of diagnostic text for enhancing image segmentation in real-world clinical settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.