Papers
Topics
Authors
Recent
2000 character limit reached

Goal Discovery with Causal Capacity for Efficient Reinforcement Learning (2508.09624v1)

Published 13 Aug 2025 in cs.LG and cs.AI

Abstract: Causal inference is crucial for humans to explore the world, which can be modeled to enable an agent to efficiently explore the environment in reinforcement learning. Existing research indicates that establishing the causality between action and state transition will enhance an agent to reason how a policy affects its future trajectory, thereby promoting directed exploration. However, it is challenging to measure the causality due to its intractability in the vast state-action space of complex scenarios. In this paper, we propose a novel Goal Discovery with Causal Capacity (GDCC) framework for efficient environment exploration. Specifically, we first derive a measurement of causality in state space, \emph{i.e.,} causal capacity, which represents the highest influence of an agent's behavior on future trajectories. After that, we present a Monte Carlo based method to identify critical points in discrete state space and further optimize this method for continuous high-dimensional environments. Those critical points are used to uncover where the agent makes important decisions in the environment, which are then regarded as our subgoals to guide the agent to make exploration more purposefully and efficiently. Empirical results from multi-objective tasks demonstrate that states with high causal capacity align with our expected subgoals, and our GDCC achieves significant success rate improvements compared to baselines.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.