Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 76 tok/s
Gemini 2.5 Pro 58 tok/s Pro
GPT-5 Medium 35 tok/s Pro
GPT-5 High 28 tok/s Pro
GPT-4o 78 tok/s Pro
Kimi K2 218 tok/s Pro
GPT OSS 120B 465 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Episodic Memory Representation for Long-form Video Understanding (2508.09486v1)

Published 13 Aug 2025 in cs.CV, cs.AI, and cs.MM

Abstract: Video LLMs (Video-LLMs) excel at general video understanding but struggle with long-form videos due to context window limits. Consequently, recent approaches focus on keyframe retrieval, condensing lengthy videos into a small set of informative frames. Despite their practicality, these methods simplify the problem to static text image matching, overlooking spatio temporal relationships crucial for capturing scene transitions and contextual continuity, and may yield redundant keyframes with limited information, diluting salient cues essential for accurate video question answering. To address these limitations, we introduce Video-EM, a training free framework inspired by the principles of human episodic memory, designed to facilitate robust and contextually grounded reasoning. Rather than treating keyframes as isolated visual entities, Video-EM explicitly models them as temporally ordered episodic events, capturing both spatial relationships and temporal dynamics necessary for accurately reconstructing the underlying narrative. Furthermore, the framework leverages chain of thought (CoT) thinking with LLMs to iteratively identify a minimal yet highly informative subset of episodic memories, enabling efficient and accurate question answering by Video-LLMs. Extensive evaluations on the Video-MME, EgoSchema, HourVideo, and LVBench benchmarks confirm the superiority of Video-EM, which achieves highly competitive results with performance gains of 4-9 percent over respective baselines while utilizing fewer frames.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 post and received 0 likes.

Youtube Logo Streamline Icon: https://streamlinehq.com

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube