A Classical Quadratic Speedup for Planted $k$XOR (2508.09422v1)
Abstract: A recent work of Schmidhuber et al (QIP, SODA, & Phys. Rev. X 2025) exhibited a quantum algorithm for the noisy planted $k$XOR problem running quartically faster than all known classical algorithms. In this work, we design a new classical algorithm that is quadratically faster than the best previous one, in the case of large constant $k$. Thus for such $k$, the quantum speedup of Schmidhuber et al. becomes only quadratic (though it retains a space advantage). Our algorithm, which also works in the semirandom case, combines tools from sublinear-time algorithms (essentially, the birthday paradox) and polynomial anticoncentration.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.