Papers
Topics
Authors
Recent
2000 character limit reached

Synaptic Pruning: A Biological Inspiration for Deep Learning Regularization

Published 12 Aug 2025 in cs.LG and cs.AI | (2508.09330v1)

Abstract: Synaptic pruning in biological brains removes weak connections to improve efficiency. In contrast, dropout regularization in artificial neural networks randomly deactivates neurons without considering activity-dependent pruning. We propose a magnitude-based synaptic pruning method that better reflects biology by progressively removing low-importance connections during training. Integrated directly into the training loop as a dropout replacement, our approach computes weight importance from absolute magnitudes across layers and applies a cubic schedule to gradually increase global sparsity. At fixed intervals, pruning masks permanently remove low-importance weights while maintaining gradient flow for active ones, eliminating the need for separate pruning and fine-tuning phases. Experiments on multiple time series forecasting models including RNN, LSTM, and Patch Time Series Transformer across four datasets show consistent gains. Our method ranked best overall, with statistically significant improvements confirmed by Friedman tests (p < 0.01). In financial forecasting, it reduced Mean Absolute Error by up to 20% over models with no or standard dropout, and up to 52% in select transformer models. This dynamic pruning mechanism advances regularization by coupling weight elimination with progressive sparsification, offering easy integration into diverse architectures. Its strong performance, especially in financial time series forecasting, highlights its potential as a practical alternative to conventional dropout techniques.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.