Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 165 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 41 tok/s Pro
GPT-5 High 33 tok/s Pro
GPT-4o 124 tok/s Pro
Kimi K2 193 tok/s Pro
GPT OSS 120B 443 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Deep Generative Models for Discrete Genotype Simulation (2508.09212v1)

Published 11 Aug 2025 in q-bio.GN, cs.AI, and cs.LG

Abstract: Deep generative models open new avenues for simulating realistic genomic data while preserving privacy and addressing data accessibility constraints. While previous studies have primarily focused on generating gene expression or haplotype data, this study explores generating genotype data in both unconditioned and phenotype-conditioned settings, which is inherently more challenging due to the discrete nature of genotype data. In this work, we developed and evaluated commonly used generative models, including Variational Autoencoders (VAEs), Diffusion Models, and Generative Adversarial Networks (GANs), and proposed adaptation tailored to discrete genotype data. We conducted extensive experiments on large-scale datasets, including all chromosomes from cow and multiple chromosomes from human. Model performance was assessed using a well-established set of metrics drawn from both deep learning and quantitative genetics literature. Our results show that these models can effectively capture genetic patterns and preserve genotype-phenotype association. Our findings provide a comprehensive comparison of these models and offer practical guidelines for future research in genotype simulation. We have made our code publicly available at https://github.com/SihanXXX/DiscreteGenoGen.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Github Logo Streamline Icon: https://streamlinehq.com
X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 4 likes.

Upgrade to Pro to view all of the tweets about this paper: