Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 77 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 24 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 94 tok/s Pro
Kimi K2 216 tok/s Pro
GPT OSS 120B 459 tok/s Pro
Claude Sonnet 4.5 35 tok/s Pro
2000 character limit reached

Hybrid(Transformer+CNN)-based Polyp Segmentation (2508.09189v1)

Published 8 Aug 2025 in eess.IV, cs.AI, and cs.CV

Abstract: Colonoscopy is still the main method of detection and segmentation of colonic polyps, and recent advancements in deep learning networks such as U-Net, ResUNet, Swin-UNet, and PraNet have made outstanding performance in polyp segmentation. Yet, the problem is extremely challenging due to high variation in size, shape, endoscopy types, lighting, imaging protocols, and ill-defined boundaries (fluid, folds) of the polyps, rendering accurate segmentation a challenging and problematic task. To address these critical challenges in polyp segmentation, we introduce a hybrid (Transformer + CNN) model that is crafted to enhance robustness against evolving polyp characteristics. Our hybrid architecture demonstrates superior performance over existing solutions, particularly in addressing two critical challenges: (1) accurate segmentation of polyps with ill-defined margins through boundary-aware attention mechanisms, and (2) robust feature extraction in the presence of common endoscopic artifacts, including specular highlights, motion blur, and fluid occlusions. Quantitative evaluations reveal significant improvements in segmentation accuracy (Recall improved by 1.76%, i.e., 0.9555, accuracy improved by 0.07%, i.e., 0.9849) and artifact resilience compared to state-of-the-art polyp segmentation methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.