Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 119 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 17 tok/s Pro
GPT-4o 60 tok/s Pro
Kimi K2 196 tok/s Pro
GPT OSS 120B 423 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Multimodal RAG Enhanced Visual Description (2508.09170v1)

Published 6 Aug 2025 in cs.LG, cs.AI, cs.CV, and cs.IR

Abstract: Textual descriptions for multimodal inputs entail recurrent refinement of queries to produce relevant output images. Despite efforts to address challenges such as scaling model size and data volume, the cost associated with pre-training and fine-tuning remains substantial. However, pre-trained large multimodal models (LMMs) encounter a modality gap, characterised by a misalignment between textual and visual representations within a common embedding space. Although fine-tuning can potentially mitigate this gap, it is typically expensive and impractical due to the requirement for extensive domain-driven data. To overcome this challenge, we propose a lightweight training-free approach utilising Retrieval-Augmented Generation (RAG) to extend across the modality using a linear mapping, which can be computed efficiently. During inference, this mapping is applied to images embedded by an LMM enabling retrieval of closest textual descriptions from the training set. These textual descriptions, in conjunction with an instruction, cater as an input prompt for the LLM to generate new textual descriptions. In addition, we introduce an iterative technique for distilling the mapping by generating synthetic descriptions via the LLM facilitating optimisation for standard utilised image description measures. Experimental results on two benchmark multimodal datasets demonstrate significant improvements.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 3 likes.

Upgrade to Pro to view all of the tweets about this paper:

alphaXiv