Papers
Topics
Authors
Recent
2000 character limit reached

Physics-Constrained Fine-Tuning of Flow-Matching Models for Generation and Inverse Problems (2508.09156v1)

Published 5 Aug 2025 in cs.LG, cs.AI, and stat.AP

Abstract: We present a framework for fine-tuning flow-matching generative models to enforce physical constraints and solve inverse problems in scientific systems. Starting from a model trained on low-fidelity or observational data, we apply a differentiable post-training procedure that minimizes weak-form residuals of governing partial differential equations (PDEs), promoting physical consistency and adherence to boundary conditions without distorting the underlying learned distribution. To infer unknown physical inputs, such as source terms, material parameters, or boundary data, we augment the generative process with a learnable latent parameter predictor and propose a joint optimization strategy. The resulting model produces physically valid field solutions alongside plausible estimates of hidden parameters, effectively addressing ill-posed inverse problems in a data-driven yet physicsaware manner. We validate our method on canonical PDE benchmarks, demonstrating improved satisfaction of PDE constraints and accurate recovery of latent coefficients. Our approach bridges generative modelling and scientific inference, opening new avenues for simulation-augmented discovery and data-efficient modelling of physical systems.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 3 likes about this paper.