Papers
Topics
Authors
Recent
Detailed Answer
Quick Answer
Concise responses based on abstracts only
Detailed Answer
Well-researched responses based on abstracts and relevant paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses
Gemini 2.5 Flash
Gemini 2.5 Flash 95 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 15 tok/s Pro
GPT-5 High 19 tok/s Pro
GPT-4o 90 tok/s Pro
GPT OSS 120B 449 tok/s Pro
Kimi K2 192 tok/s Pro
2000 character limit reached

Quantum Circuit Complexity of Matrix-Product Unitaries (2508.08160v1)

Published 11 Aug 2025 in quant-ph, cond-mat.str-el, math-ph, and math.MP

Abstract: Matrix-product unitaries (MPUs) are many-body unitary operators that, as a consequence of their tensor-network structure, preserve the entanglement area law in 1D systems. However, it is unknown how to implement an MPU as a quantum circuit since the individual tensors describing the MPU are not unitary. In this paper, we show that a large class of MPUs can be implemented with a polynomial-depth quantum circuit. For an $N$-site MPU built from a repeated bulk tensor with open boundary, we explicitly construct a quantum circuit of polynomial depth $T = O(N{\alpha})$ realizing the MPU, where the constant $\alpha$ depends only on the bulk and boundary tensor and not the system size $N$. We show that this class includes nontrivial unitaries that generate long-range entanglement and, in particular, contains a large class of unitaries constructed from representations of $C*$-weak Hopf algebras. Furthermore, we also adapt our construction to nonuniform translationally-varying MPUs and show that they can be implemented by a circuit of depth $O(N{\beta} \, \mathrm{poly}\, D)$ where $\beta \le 1 + \log_2 \sqrt{D}/ s_{\min}$, with $D$ being the bond dimension and $s_{\min}$ is the smallest nonzero Schmidt value of the normalized Choi state corresponding to the MPU.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Summary

We haven't generated a summary for this paper yet.

Ai Generate Text Spark Streamline Icon: https://streamlinehq.com

Paper Prompts

Sign up for free to create and run prompts on this paper using GPT-5.

Dice Question Streamline Icon: https://streamlinehq.com

Follow-up Questions

We haven't generated follow-up questions for this paper yet.