Papers
Topics
Authors
Recent
2000 character limit reached

Fermionic quantum cellular automata and generalized matrix product unitaries

Published 23 Jul 2020 in cond-mat.stat-mech, math-ph, math.MP, and quant-ph | (2007.11905v2)

Abstract: We study matrix product unitary operators (MPUs) for fermionic one-dimensional (1D) chains. In stark contrast with the case of 1D qudit systems, we show that (i) fermionic MPUs do not necessarily feature a strict causal cone and (ii) not all fermionic Quantum Cellular Automata (QCA) can be represented as fermionic MPUs. We then introduce a natural generalization of the latter, obtained by allowing for an additional operator acting on their auxiliary space. We characterize a family of such generalized MPUs that are locality-preserving, and show that, up to appending inert ancillary fermionic degrees of freedom, any representative of this family is a fermionic QCA and viceversa. Finally, we prove an index theorem for generalized MPUs, recovering the recently derived classification of fermionic QCA in one dimension. As a technical tool for our analysis, we also introduce a graded canonical form for fermionic matrix product states, proving its uniqueness up to similarity transformations.

Summary

Paper to Video (Beta)

Whiteboard

No one has generated a whiteboard explanation for this paper yet.

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.