Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 158 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 29 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 117 tok/s Pro
Kimi K2 182 tok/s Pro
GPT OSS 120B 439 tok/s Pro
Claude Sonnet 4.5 38 tok/s Pro
2000 character limit reached

Iterative refinement, not training objective, makes HuBERT behave differently from wav2vec 2.0 (2508.08110v1)

Published 11 Aug 2025 in cs.CL

Abstract: Self-supervised models for speech representation learning now see widespread use for their versatility and performance on downstream tasks, but the effect of model architecture on the linguistic information learned in their representations remains under-studied. This study investigates two such models, HuBERT and wav2vec 2.0, and minimally compares two of their architectural differences: training objective and iterative pseudo-label refinement through multiple training iterations. We find that differences in canonical correlation of hidden representations to word identity, phoneme identity, and speaker identity are explained by training iteration, not training objective. We suggest that future work investigate the reason for the effectiveness of iterative refinement in encoding linguistic information in self-supervised speech representations.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.