Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 174 tok/s
Gemini 2.5 Pro 51 tok/s Pro
GPT-5 Medium 38 tok/s Pro
GPT-5 High 34 tok/s Pro
GPT-4o 91 tok/s Pro
Kimi K2 205 tok/s Pro
GPT OSS 120B 438 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Heterogeneity in Entity Matching: A Survey and Experimental Analysis (2508.08076v1)

Published 11 Aug 2025 in cs.DB

Abstract: Entity matching (EM) is a fundamental task in data integration and analytics, essential for identifying records that refer to the same real-world entity across diverse sources. In practice, datasets often differ widely in structure, format, schema, and semantics, creating substantial challenges for EM. We refer to this setting as Heterogeneous EM (HEM). This survey offers a unified perspective on HEM by introducing a taxonomy, grounded in prior work, that distinguishes two primary categories -- representation and semantic heterogeneity -- and their subtypes. The taxonomy provides a systematic lens for understanding how variations in data form and meaning shape the complexity of matching tasks. We then connect this framework to the FAIR principles -- Findability, Accessibility, Interoperability, and Reusability -- demonstrating how they both reveal the challenges of HEM and suggest strategies for mitigating them. Building on this foundation, we critically review recent EM methods, examining their ability to address different heterogeneity types, and conduct targeted experiments on state-of-the-art models to evaluate their robustness and adaptability under semantic heterogeneity. Our analysis uncovers persistent limitations in current approaches and points to promising directions for future research, including multimodal matching, human-in-the-loop workflows, deeper integration with LLMs and knowledge graphs, and fairness-aware evaluation in heterogeneous settings.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.