Papers
Topics
Authors
Recent
2000 character limit reached

Stochastic dynamics learning with state-space systems (2508.07876v1)

Published 11 Aug 2025 in stat.ML, cs.LG, math.DS, math.ST, and stat.TH

Abstract: This work advances the theoretical foundations of reservoir computing (RC) by providing a unified treatment of fading memory and the echo state property (ESP) in both deterministic and stochastic settings. We investigate state-space systems, a central model class in time series learning, and establish that fading memory and solution stability hold generically -- even in the absence of the ESP -- offering a robust explanation for the empirical success of RC models without strict contractivity conditions. In the stochastic case, we critically assess stochastic echo states, proposing a novel distributional perspective rooted in attractor dynamics on the space of probability distributions, which leads to a rich and coherent theory. Our results extend and generalize previous work on non-autonomous dynamical systems, offering new insights into causality, stability, and memory in RC models. This lays the groundwork for reliable generative modeling of temporal data in both deterministic and stochastic regimes.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Video Overview

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Tweets

Sign up for free to view the 1 tweet with 34 likes about this paper.