Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 59 tok/s
Gemini 2.5 Pro 50 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 80 tok/s Pro
Kimi K2 181 tok/s Pro
GPT OSS 120B 454 tok/s Pro
Claude Sonnet 4.5 33 tok/s Pro
2000 character limit reached

CBDES MoE: Hierarchically Decoupled Mixture-of-Experts for Functional Modules in Autonomous Driving (2508.07838v1)

Published 11 Aug 2025 in cs.CV

Abstract: Bird's Eye View (BEV) perception systems based on multi-sensor feature fusion have become a fundamental cornerstone for end-to-end autonomous driving. However, existing multi-modal BEV methods commonly suffer from limited input adaptability, constrained modeling capacity, and suboptimal generalization. To address these challenges, we propose a hierarchically decoupled Mixture-of-Experts architecture at the functional module level, termed Computing Brain DEvelopment System Mixture-of-Experts (CBDES MoE). CBDES MoE integrates multiple structurally heterogeneous expert networks with a lightweight Self-Attention Router (SAR) gating mechanism, enabling dynamic expert path selection and sparse, input-aware efficient inference. To the best of our knowledge, this is the first modular Mixture-of-Experts framework constructed at the functional module granularity within the autonomous driving domain. Extensive evaluations on the real-world nuScenes dataset demonstrate that CBDES MoE consistently outperforms fixed single-expert baselines in 3D object detection. Compared to the strongest single-expert model, CBDES MoE achieves a 1.6-point increase in mAP and a 4.1-point improvement in NDS, demonstrating the effectiveness and practical advantages of the proposed approach.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.