Towards Aligning Personalized Conversational Recommendation Agents with Users' Privacy Preferences (2508.07672v1)
Abstract: The proliferation of AI agents, with their complex and context-dependent actions, renders conventional privacy paradigms obsolete. This position paper argues that the current model of privacy management, rooted in a user's unilateral control over a passive tool, is inherently mismatched with the dynamic and interactive nature of AI agents. We contend that ensuring effective privacy protection necessitates that the agents proactively align with users' privacy preferences instead of passively waiting for the user to control. To ground this shift, and using personalized conversational recommendation agents as a case, we propose a conceptual framework built on Contextual Integrity (CI) theory and Privacy Calculus theory. This synthesis first reframes automatically controlling users' privacy as an alignment problem, where AI agents initially did not know users' preferences, and would learn their privacy preferences through implicit or explicit feedback. Upon receiving the preference feedback, the agents used alignment and Pareto optimization for aligning preferences and balancing privacy and utility. We introduced formulations and instantiations, potential applications, as well as five challenges.
Sponsor
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.