Papers
Topics
Authors
Recent
2000 character limit reached

MSPT: A Lightweight Face Image Quality Assessment Method with Multi-stage Progressive Training (2508.07590v1)

Published 11 Aug 2025 in cs.MM and cs.CV

Abstract: Accurately assessing the perceptual quality of face images is crucial, especially with the rapid progress in face restoration and generation. Traditional quality assessment methods often struggle with the unique characteristics of face images, limiting their generalizability. While learning-based approaches demonstrate superior performance due to their strong fitting capabilities, their high complexity typically incurs significant computational and storage costs, hindering practical deployment. To address this, we propose a lightweight face quality assessment network with Multi-Stage Progressive Training (MSPT). Our network employs a three-stage progressive training strategy that gradually introduces more diverse data samples and increases input image resolution. This novel approach enables lightweight networks to achieve high performance by effectively learning complex quality features while significantly mitigating catastrophic forgetting. Our MSPT achieved the second highest score on the VQualA 2025 face image quality assessment benchmark dataset, demonstrating that MSPT achieves comparable or better performance than state-of-the-art methods while maintaining efficient inference.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

Sign up for free to view the 1 tweet with 0 likes about this paper.