Papers
Topics
Authors
Recent
2000 character limit reached

Physics-informed Multiresolution Wavelet Neural Network Method for Solving Partial Differential Equations (2508.07546v1)

Published 11 Aug 2025 in math.NA and cs.NA

Abstract: In this paper, a physics-informed multiresolution wavelet neural network (PIMWNN) method is proposed for solving partial differential equations (PDEs). This method uses the multiresolution wavelet neural network (MWNN) to approximate unknown functions, then substituting the MWNN into PDEs and training the MWNN by least-squares algorithm. We apply the proposed method to various problems, including stationary/nonstationary advection, diffusion and advection-diffusion problems, and linear/nonlinear time-dependent problems. Numerical experiments show that the PIMWNN method can achieve higher accuracy and faster speed than Physics Informed Neural Networks (PINNs). Moreover, the PIMWNN method, being mesh-free, can handle different boundary conditions easily and solve the time-dependent problems efficiently. The proposed method is expected to solve the spectral bias problem in network training. These characteristics show the great potential of the PIMWNN method used in the field of numerical solving methods for PDEs.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.