Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 156 tok/s
Gemini 2.5 Pro 49 tok/s Pro
GPT-5 Medium 30 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 110 tok/s Pro
Kimi K2 212 tok/s Pro
GPT OSS 120B 436 tok/s Pro
Claude Sonnet 4.5 39 tok/s Pro
2000 character limit reached

Event-Aware Sentiment Factors from LLM-Augmented Financial Tweets: A Transparent Framework for Interpretable Quant Trading (2508.07408v1)

Published 10 Aug 2025 in q-fin.ST, cs.CL, and cs.LG

Abstract: In this study, we wish to showcase the unique utility of LLMs in financial semantic annotation and alpha signal discovery. Leveraging a corpus of company-related tweets, we use an LLM to automatically assign multi-label event categories to high-sentiment-intensity tweets. We align these labeled sentiment signals with forward returns over 1-to-7-day horizons to evaluate their statistical efficacy and market tradability. Our experiments reveal that certain event labels consistently yield negative alpha, with Sharpe ratios as low as -0.38 and information coefficients exceeding 0.05, all statistically significant at the 95\% confidence level. This study establishes the feasibility of transforming unstructured social media text into structured, multi-label event variables. A key contribution of this work is its commitment to transparency and reproducibility; all code and methodologies are made publicly available. Our results provide compelling evidence that social media sentiment is a valuable, albeit noisy, signal in financial forecasting and underscore the potential of open-source frameworks to democratize algorithmic trading research.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We found no open problems mentioned in this paper.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (2)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 1 tweet and received 2 likes.

Upgrade to Pro to view all of the tweets about this paper:

Youtube Logo Streamline Icon: https://streamlinehq.com