Papers
Topics
Authors
Recent
2000 character limit reached

Finite-Time Convergence Analysis of ODE-based Generative Models for Stochastic Interpolants (2508.07333v1)

Published 10 Aug 2025 in cs.LG

Abstract: Stochastic interpolants offer a robust framework for continuously transforming samples between arbitrary data distributions, holding significant promise for generative modeling. Despite their potential, rigorous finite-time convergence guarantees for practical numerical schemes remain largely unexplored. In this work, we address the finite-time convergence analysis of numerical implementations for ordinary differential equations (ODEs) derived from stochastic interpolants. Specifically, we establish novel finite-time error bounds in total variation distance for two widely used numerical integrators: the first-order forward Euler method and the second-order Heun's method. Furthermore, our analysis on the iteration complexity of specific stochastic interpolant constructions provides optimized schedules to enhance computational efficiency. Our theoretical findings are corroborated by numerical experiments, which validate the derived error bounds and complexity analyses.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.