Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 134 tok/s
Gemini 2.5 Pro 41 tok/s Pro
GPT-5 Medium 27 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 84 tok/s Pro
Kimi K2 174 tok/s Pro
GPT OSS 120B 430 tok/s Pro
Claude Sonnet 4.5 37 tok/s Pro
2000 character limit reached

Policy Newton methods for Distortion Riskmetrics (2508.07249v1)

Published 10 Aug 2025 in cs.LG

Abstract: We consider the problem of risk-sensitive control in a reinforcement learning (RL) framework. In particular, we aim to find a risk-optimal policy by maximizing the distortion riskmetric (DRM) of the discounted reward in a finite horizon Markov decision process (MDP). DRMs are a rich class of risk measures that include several well-known risk measures as special cases. We derive a policy Hessian theorem for the DRM objective using the likelihood ratio method. Using this result, we propose a natural DRM Hessian estimator from sample trajectories of the underlying MDP. Next, we present a cubic-regularized policy Newton algorithm for solving this problem in an on-policy RL setting using estimates of the DRM gradient and Hessian. Our proposed algorithm is shown to converge to an $\epsilon$-second-order stationary point ($\epsilon$-SOSP) of the DRM objective, and this guarantee ensures the escaping of saddle points. The sample complexity of our algorithms to find an $ \epsilon$-SOSP is $\mathcal{O}(\epsilon{-3.5})$. Our experiments validate the theoretical findings. To the best of our knowledge, our is the first work to present convergence to an $\epsilon$-SOSP of a risk-sensitive objective, while existing works in the literature have either shown convergence to a first-order stationary point of a risk-sensitive objective, or a SOSP of a risk-neutral one.

Summary

We haven't generated a summary for this paper yet.

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com