Papers
Topics
Authors
Recent
2000 character limit reached

LLM-based Agents for Automated Confounder Discovery and Subgroup Analysis in Causal Inference (2508.07221v1)

Published 10 Aug 2025 in cs.LG, cs.AI, cs.MA, stat.AP, and stat.ME

Abstract: Estimating individualized treatment effects from observational data presents a persistent challenge due to unmeasured confounding and structural bias. Causal Machine Learning (causal ML) methods, such as causal trees and doubly robust estimators, provide tools for estimating conditional average treatment effects. These methods have limited effectiveness in complex real-world environments due to the presence of latent confounders or those described in unstructured formats. Moreover, reliance on domain experts for confounder identification and rule interpretation introduces high annotation cost and scalability concerns. In this work, we proposed LLM-based agents for automated confounder discovery and subgroup analysis that integrate agents into the causal ML pipeline to simulate domain expertise. Our framework systematically performs subgroup identification and confounding structure discovery by leveraging the reasoning capabilities of LLM-based agents, which reduces human dependency while preserving interpretability. Experiments on real-world medical datasets show that our proposed approach enhances treatment effect estimation robustness by narrowing confidence intervals and uncovering unrecognized confounding biases. Our findings suggest that LLM-based agents offer a promising path toward scalable, trustworthy, and semantically aware causal inference.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.