Papers
Topics
Authors
Recent
2000 character limit reached

A Real-Time, Self-Tuning Moderator Framework for Adversarial Prompt Detection (2508.07139v1)

Published 10 Aug 2025 in cs.CR and cs.AI

Abstract: Ensuring LLM alignment is critical to information security as AI models become increasingly widespread and integrated in society. Unfortunately, many defenses against adversarial attacks and jailbreaking on LLMs cannot adapt quickly to new attacks, degrade model responses to benign prompts, or introduce significant barriers to scalable implementation. To mitigate these challenges, we introduce a real-time, self-tuning (RTST) moderator framework to defend against adversarial attacks while maintaining a lightweight training footprint. We empirically evaluate its effectiveness using Google's Gemini models against modern, effective jailbreaks. Our results demonstrate the advantages of an adaptive, minimally intrusive framework for jailbreak defense over traditional fine-tuning or classifier models.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

Authors (1)

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.