Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 167 tok/s
Gemini 2.5 Pro 47 tok/s Pro
GPT-5 Medium 39 tok/s Pro
GPT-5 High 29 tok/s Pro
GPT-4o 92 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 429 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

QuProFS: An Evolutionary Training-free Approach to Efficient Quantum Feature Map Search (2508.07104v1)

Published 9 Aug 2025 in quant-ph and cs.LG

Abstract: The quest for effective quantum feature maps for data encoding presents significant challenges, particularly due to the flat training landscapes and lengthy training processes associated with parameterised quantum circuits. To address these issues, we propose an evolutionary training-free quantum architecture search (QAS) framework that employs circuit-based heuristics focused on trainability, hardware robustness, generalisation ability, expressivity, complexity, and kernel-target alignment. By ranking circuit architectures with various proxies, we reduce evaluation costs and incorporate hardware-aware circuits to enhance robustness against noise. We evaluate our approach on classification tasks (using quantum support vector machine) across diverse datasets using both artificial and quantum-generated datasets. Our approach demonstrates competitive accuracy on both simulators and real quantum hardware, surpassing state-of-the-art QAS methods in terms of sampling efficiency and achieving up to a 2x speedup in architecture search runtime.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

X Twitter Logo Streamline Icon: https://streamlinehq.com

Tweets

This paper has been mentioned in 2 tweets and received 1 like.

Upgrade to Pro to view all of the tweets about this paper:

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube