Using Imperfect Synthetic Data in Downstream Inference Tasks (2508.06635v1)
Abstract: Predictions and generations from LLMs are increasingly being explored as an aid to computational social science and human subject research in limited data regimes. While previous technical work has explored the potential to use model-predicted labels for unlabeled data in a principled manner, there is increasing interest in using LLMs to generate entirely new synthetic samples (also termed as synthetic simulations), such as in responses to surveys. However, it is not immediately clear by what means practitioners can combine such data with real data and yet produce statistically valid conclusions upon them. In this work, we introduce a new estimator based on generalized method of moments, providing a hyperparameter-free solution with strong theoretical guarantees to address the challenge at hand. Surprisingly, we find that interactions between the moment residuals of synthetic data and those of real data can improve estimates of the target parameter. We empirically validate the finite-sample performance of our estimator across different regression tasks in computational social science applications, demonstrating large empirical gains.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.