Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 164 tok/s
Gemini 2.5 Pro 46 tok/s Pro
GPT-5 Medium 21 tok/s Pro
GPT-5 High 27 tok/s Pro
GPT-4o 72 tok/s Pro
Kimi K2 204 tok/s Pro
GPT OSS 120B 450 tok/s Pro
Claude Sonnet 4.5 34 tok/s Pro
2000 character limit reached

Factor Augmented Supervised Learning with Text Embeddings (2508.06548v1)

Published 6 Aug 2025 in cs.CL, cs.AI, cs.LG, and stat.ML

Abstract: LLMs generate text embeddings from text data, producing vector representations that capture the semantic meaning and contextual relationships of words. However, the high dimensionality of these embeddings often impedes efficiency and drives up computational cost in downstream tasks. To address this, we propose AutoEncoder-Augmented Learning with Text (AEALT), a supervised, factor-augmented framework that incorporates dimension reduction directly into pre-trained LLM workflows. First, we extract embeddings from text documents; next, we pass them through a supervised augmented autoencoder to learn low-dimensional, task-relevant latent factors. By modeling the nonlinear structure of complex embeddings, AEALT outperforms conventional deep-learning approaches that rely on raw embeddings. We validate its broad applicability with extensive experiments on classification, anomaly detection, and prediction tasks using multiple real-world public datasets. Numerical results demonstrate that AEALT yields substantial gains over both vanilla embeddings and several standard dimension reduction methods.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.

Youtube Logo Streamline Icon: https://streamlinehq.com