Papers
Topics
Authors
Recent
2000 character limit reached

Maximum Impact with Fewer Features: Efficient Feature Selection for Cold-Start Recommenders through Collaborative Importance Weighting (2508.06455v1)

Published 8 Aug 2025 in cs.IR and cs.LG

Abstract: Cold-start challenges in recommender systems necessitate leveraging auxiliary features beyond user-item interactions. However, the presence of irrelevant or noisy features can degrade predictive performance, whereas an excessive number of features increases computational demands, leading to higher memory consumption and prolonged training times. To address this, we propose a feature selection strategy that prioritizes the user behavioral information. Our method enhances the feature representation by incorporating correlations from collaborative behavior data using a hybrid matrix factorization technique and then ranks features using a mechanism based on the maximum volume algorithm. This approach identifies the most influential features, striking a balance between recommendation accuracy and computational efficiency. We conduct an extensive evaluation across various datasets and hybrid recommendation models, demonstrating that our method excels in cold-start scenarios by selecting minimal yet highly effective feature subsets. Even under strict feature reduction, our approach surpasses existing feature selection techniques while maintaining superior efficiency.

Summary

We haven't generated a summary for this paper yet.

Whiteboard

Paper to Video (Beta)

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Continue Learning

We haven't generated follow-up questions for this paper yet.

Collections

Sign up for free to add this paper to one or more collections.

Don't miss out on important new AI/ML research

See which papers are being discussed right now on X, Reddit, and more:

“Emergent Mind helps me see which AI papers have caught fire online.”

Philip

Philip

Creator, AI Explained on YouTube