Global strong solutions to the frame hydrodynamics for biaxial nematic phases (2508.06376v1)
Abstract: In this article, we consider the frame hydrodynamics of biaxial nematic phases, a coupled system between the evolution of the orthonormal frame and the Navier--Stokes equation, which is derived from a molecular-theory-based dynamical tensor model about two second-order tensors. In two and three dimensions, we establish global well-posedness of strong solutions to the Cauchy problem of frame hydrodynamics for small initial data. The key ingredient of the proof relies on estimates of nonlinear terms with rotational derivatives on $SO(3)$, together with the dissipative structure of the frame hydrodynamics.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.