Papers
Topics
Authors
Recent
2000 character limit reached

Synthetic Data Generation and Differential Privacy using Tensor Networks' Matrix Product States (MPS) (2508.06251v1)

Published 8 Aug 2025 in cs.LG, cs.AI, cs.CR, and quant-ph

Abstract: Synthetic data generation is a key technique in modern artificial intelligence, addressing data scarcity, privacy constraints, and the need for diverse datasets in training robust models. In this work, we propose a method for generating privacy-preserving high-quality synthetic tabular data using Tensor Networks, specifically Matrix Product States (MPS). We benchmark the MPS-based generative model against state-of-the-art models such as CTGAN, VAE, and PrivBayes, focusing on both fidelity and privacy-preserving capabilities. To ensure differential privacy (DP), we integrate noise injection and gradient clipping during training, enabling privacy guarantees via R\'enyi Differential Privacy accounting. Across multiple metrics analyzing data fidelity and downstream machine learning task performance, our results show that MPS outperforms classical models, particularly under strict privacy constraints. This work highlights MPS as a promising tool for privacy-aware synthetic data generation. By combining the expressive power of tensor network representations with formal privacy mechanisms, the proposed approach offers an interpretable and scalable alternative for secure data sharing. Its structured design facilitates integration into sensitive domains where both data quality and confidentiality are critical.

Summary

We haven't generated a summary for this paper yet.

Slide Deck Streamline Icon: https://streamlinehq.com

Whiteboard

Dice Question Streamline Icon: https://streamlinehq.com

Open Problems

We haven't generated a list of open problems mentioned in this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.