Scaling Personality Control in LLMs with Big Five Scaler Prompts (2508.06149v1)
Abstract: We present Big5-Scaler, a prompt-based framework for conditioning LLMs with controllable Big Five personality traits. By embedding numeric trait values into natural language prompts, our method enables fine-grained personality control without additional training. We evaluate Big5-Scaler across trait expression, dialogue generation, and human trait imitation tasks. Results show that it induces consistent and distinguishable personality traits across models, with performance varying by prompt type and scale. Our analysis highlights the effectiveness of concise prompts and lower trait intensities, providing a efficient approach for building personality-aware dialogue agents.
Paper Prompts
Sign up for free to create and run prompts on this paper using GPT-5.
Top Community Prompts
Collections
Sign up for free to add this paper to one or more collections.