Papers
Topics
Authors
Recent
Assistant
AI Research Assistant
Well-researched responses based on relevant abstracts and paper content.
Custom Instructions Pro
Preferences or requirements that you'd like Emergent Mind to consider when generating responses.
Gemini 2.5 Flash
Gemini 2.5 Flash 168 tok/s
Gemini 2.5 Pro 48 tok/s Pro
GPT-5 Medium 28 tok/s Pro
GPT-5 High 25 tok/s Pro
GPT-4o 122 tok/s Pro
Kimi K2 188 tok/s Pro
GPT OSS 120B 464 tok/s Pro
Claude Sonnet 4.5 36 tok/s Pro
2000 character limit reached

Reverse Diffusion Sequential Monte Carlo Samplers (2508.05926v1)

Published 8 Aug 2025 in stat.CO

Abstract: We propose a novel sequential Monte Carlo (SMC) method for sampling from unnormalized target distributions based on a reverse denoising diffusion process. While recent diffusion-based samplers simulate the reverse diffusion using approximate score functions, they can suffer from accumulating errors due to time discretization and imperfect score estimation. In this work, we introduce a principled SMC framework that formalizes diffusion-based samplers as proposals while systematically correcting for their biases. The core idea is to construct informative intermediate target distributions that progressively steer the sampling trajectory toward the final target distribution. Although ideal intermediate targets are intractable, we develop exact approximations using quantities from the score estimation-based proposal, without requiring additional model training or inference overhead. The resulting sampler, termed RDSMC, enables consistent sampling and unbiased estimation of the target's normalization constant under mild conditions. We demonstrate the effectiveness of our method on a range of synthetic targets and real-world Bayesian inference problems.

Summary

We haven't generated a summary for this paper yet.

Lightbulb Streamline Icon: https://streamlinehq.com

Continue Learning

We haven't generated follow-up questions for this paper yet.

List To Do Tasks Checklist Streamline Icon: https://streamlinehq.com

Collections

Sign up for free to add this paper to one or more collections.